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Solution to Eq. 4  

Despite the simplification over the original governing equation in Eq. 3, Eq. 4 is still intractable 

because of the transcendental nature of the variable wavenumber k(z). To overcome this 

difficulty, one may introduce the non-linear coordinate transformation 

𝑥 = 𝑒−2𝛼 𝑧/𝑧𝑟                   (S1) 

in which x is a new dimensionless independent variable. 

Substituting Eq. S1 back to Eq. 4 and employing the chain rule of differentiation, Eq. 4 simplifies 

to 

𝑥 𝑌 + 𝑥 𝑌 +  𝑥 𝑌 = 0           (S2) 

in which the first derivative of the dependent variable, dY/dx, has re-appeared, yet the variable 

coefficients are now simple monomials of x. 

Following Wylie & Barrett (1986) and Trachanas (2004), a simple monomial solution in the form 

Y(x) = xs is tried, which is assumed valid both at small and large values of the argument x. 

Substituting this trial solution into Eq. S2 yields the indicial equation 

𝑠 𝑠 − 1 + 𝑠  𝑥 +  𝑥 = 0               (S3) 

Evidently, for small values of x the first term in Eq. S3, associated with the lowest exponent, s, 

dominates, which provides two non-trivial solutions if s = 0 (double root). Accordingly, x = 0 is 

a regular singular point and the solution can be expressed locally as a power-law function of x. 

An alternative proof of this can be established in light of Fuch’s theorem, the conditions of which 

are satisfied by Eq. S2 at x = 0. On the other hand, for large values of x, the second term in Eq. 
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S3, associated with the largest exponent, s+1, dominates, which has no solutions in terms of s. 

This suggests that infinity is an irregular singular point, and the solution does not behave locally 

as a power function of x. 

In light of the above properties, Eq. S2 is of the Bessel type and admits the general solution 

(Wylie and Barrett, 1986; Trachanas, 2004): 

𝑌 𝑥 = 𝑥 𝐶  𝐽 𝜆𝑥 / + 𝐶  𝑁 𝜆𝑥 /           (S4) 

where Jv( ) and Nv( ) are the Bessel functions of the first and the second kind and order ν, 

respectively, while C1, C2 are integration constants to be determined from the boundary 

conditions. In the solution at hand, 

- l = 1 is a dimensionless parameter representing the step of the associated Frobenious 

power series solutions near the origin, and is equal to the difference between the powers 

of x in Eq. S3 i.e. (s+1) – (s) = 1. 

- μ = 0 is the exponent of the monomial multiplier in Eq. S4 and is equal to the average of 

the two values of s (both equal to zero) in the polynomial solution in Eq. S3. 

- ν = 0 is the order of the Bessel functions which is equal to the difference between the 

values of s in Eq. S3 divided by the step of the power series, l. 

- Parameter λ is associated with the asymptotic behavior of the solution at infinity and can 

be determined by substituting the following asymptotic relations into Eq. S2 

𝑌 ~𝑒± /
 , 𝑌′  ~ ± 𝑖 𝜆 𝑙 𝑥 /  𝑒± /

, 𝑌′′  ~∓ 𝜆  𝑙  𝑥  𝑒± /
 (S5) 

to get 𝜆 = ±                  (S6) 

in which both signs are admissible. 
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In light of the above, the solution in Equation S4 can be written in the explicit form: 

𝑌 𝑥 = 𝐶  𝐽 ± 𝑥 / + 𝐶  𝑁 ± 𝑥 /         (S7) 

Switching back to the original independent variable z and retaining the positive sign in the 

argument of the Bessel functions, the solution can be cast in the form of Eq. 6. 

Proportionality relation between C1 and C2   

Imposing the boundary condition of a traction-free surface, τ(0) = 0, Eq. 8 yields a proportionality 

relation between C1 and C2 : 

𝐶 = − 𝐶  𝐽 /𝑁              (S8) 

Displacement at soil surface u(0)  

For z = 0, the displacement at soil surface is obtained as 

𝑢 0 = 𝐶 𝑘 𝐽 𝑁 − 𝐽 𝑁 /𝑁      (S9) 

Employing Lommel’s identity (Abramowitz & Stegun, 1965) 

 𝐽 𝑁 − 𝐽 𝑁 = 2𝛼/𝜋𝑘 𝑧             (S10) 

the expression for displacement at z = 0 simplifies to that in Eq. 13.   

Derivation of Rayleigh Solutions 

To derive the fundamental frequency of the system by means of the Rayleigh quotient, both terms 

in Eq. 3 are multiplied by an arbitrary trial function of depth, u*(z), that satisfies the displacement 
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(i.e. essential) boundary conditions of the problem in the same manner as the unknown function 

u(z) 

𝐺 𝑧 ( ) 𝑢∗(𝑧) = −𝜔  𝜌(𝑧) 𝑢(𝑧) 𝑢∗(𝑧)               (S11) 

Upon integrating over depth and employing integration by parts in the first term of Eq. S11, one 

obtains: 

𝐺(𝑧) ( )𝑢∗(𝑧) − 𝐺(𝑧) ( ) ∗( )𝑑𝑧 = −𝜔 𝜌(𝑧)𝑢(𝑧)𝑢∗(𝑧)𝑑𝑧        (S12) 

The first term on the left-hand side of Eq. S12 expresses the difference between the product of 

actual stresses and virtual displacements at the two ends of the medium. Both these terms are zero 

due to the presence of the stress-free ground surface [i.e., τ(0) = 0] and the fixed base [i.e., u*(H) 

= 0]. It should be noted that the first of these conditions is enforced although the selected function 

u(z) does not necessarily satisfy du(0)/dz = 0. 

Further, assuming u*(z) = u(z), Eq. S12 simplifies to: 

𝐺(𝑧) ( ) 𝑑𝑧 = 𝜔 𝜌(𝑧) 𝑢 (𝑧) 𝑑𝑧               (S13) 

which leads directly to Eq. 19. 

To determine the compatible mode shape in Table 1, the inhomogeneous soil column is loaded 

horizontally by a static distributed load equal to the soil unit weight at each elevation. This leads 

to the following ordinary differential equation 

𝐺(𝑧) = 𝜌(𝑧) 𝑔                           (S14) 

For constant mass density, the slope of the column displacement is obtained by integration of Eq. 

S14 over z 
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𝐺(𝑧) = 𝜌 𝑔 𝑧 + 𝑐                      (S15) 

where c1 is an integration constant. Since the stiffness G(z) is finite at the surface, the 

corresponding shear strain, γ(0), is zero which requires c1 = 0. 

Using Eq. 1 and carrying out a second integration with depth, one obtains after simplification 

𝑢(𝑧) = 𝑐 − 𝑧 + 𝑒 /                  (S16) 

Imposing the boundary condition of zero displacement at the base, one obtains the displacement 

function 

𝑢(𝑧) =  2𝑎 + 1  𝑒 / − (2𝑎 + 1) 𝑒             (S17) 

from which the displacement at the top of the layer is readily calculated as 

𝑢(0) =  1 − (2𝑎 + 1) 𝑒                 (S18) 

Normalising Eq. S17 by u(0) in Eq. S18 and setting η = z/H, yields the solution of the 

“compatible” shape function in Table 1. 

Asymptotic formulae of the Bessel functions for large arguments  

The asymptotic behaviour of the relevant Bessel functions for large arguments is (Abramowitz 

and Stegun, 1965)  

𝐽 (𝑥) ~  / 𝑐𝑜𝑠 𝑥 −                    (S19) 

𝛮 (𝑥) ~  / 𝑠𝑖𝑛 𝑥 −                    (S20) 

𝐽 (𝑥) ~  / 𝑐𝑜𝑠 𝑥 −                    (S21) 
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 𝑁 (𝑥) ~  / 𝑠𝑖𝑛 𝑥 −                    (S22) 

These approximations hold for real arguments x >> ¾ for the functions of the first order, and real 

arguments x >> ¼ for the functions of the zero order. 

Asymptotic solutions in the high-frequency regime  

Based on the expressions S19 to S22, in the high-frequency regime, the following asymptotic 

expressions for the displacement, shear strain, curvature and shear stress profiles with depth in 

Eqs. 9, 10, 12 and 8 are possible: 

𝑢(𝑧) = 𝐶 / 𝑘 /  𝑒  𝑐𝑜𝑠  1 − 𝑒 𝑠𝑖𝑛  −            (S23) 

𝛾(𝑧) = −𝐶 / 𝑘 /  𝑒  𝑠𝑖𝑛  1 − 𝑒 /𝑠𝑖𝑛  −                  (S24) 

(1/𝑅) = 𝐶  / 𝑘 /  𝑒          
         (S25) 

𝜏(𝑧) = −𝐶 𝜌𝜔  / 𝑘 /  𝑒  𝑠𝑖𝑛  1 − 𝑒 /𝑠𝑖𝑛  −           (S26) 

Transfer Matrix Formulation  

For an inhomogeneous layer of thickness hi, shear modulus Gi , shear wave propagation velocity 

V0i, wavenumber at the origin k0i =ω/V0i, and inhomogeneity parameter αi, upon implementing 

Eqs. 7 and 8 and setting zr = hi , the state vector expressing displacements and shear stresses as 

functions of the undetermined coefficients C1 and C2, is: 

𝑆(𝑧) = 𝑢(𝑧)𝜏(𝑧) = ⎣⎢⎢⎢
⎡𝑘 𝑒   𝐽 𝑘 ℎ𝛼 𝑒 𝑘 𝑒   𝑁 𝑘 ℎ𝛼 𝑒−𝜌𝜔  𝐽 𝑘 ℎ𝛼 𝑒 −𝜌𝜔 𝑁 𝑘 ℎ𝛼 𝑒 ⎦⎥⎥⎥

⎤ 𝐶𝐶 = 𝛥(𝑧) 𝐶𝐶  
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                   (S27) 

The transfer matrix [L] relating the state vector at the top and the bottom of the layer can be 

obtained in a straightforward manner as  

 𝐿 = 𝛥(ℎ) 𝛥(0)              (S28) 

which yields the explicit solution 

 𝐿 =
= 1𝐴 ⎣⎢⎢⎢

⎡𝑒  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒 𝑒 𝑘𝜌𝜔  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒𝜌𝜔𝑘  𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒 −  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼  𝐽 𝑘 ℎ𝛼 𝑁 𝑘 ℎ𝛼 𝑒 − 𝐽 𝑘 ℎ𝛼 𝑒  𝑁 𝑘 ℎ𝛼 ⎦⎥⎥⎥
⎤
 

 
(S29) 

in which 
 𝐴 =  𝐽 𝑁 − 𝐽  𝑁          (S30) 
 

If the above transfer matrix is combined with the familiar counterpart for a homogeneous layer 

(Mylonakis 1995) 

𝐿 = 𝛥(ℎ) 𝛥(0) = cos (𝑘 ℎ ) sin (𝑘 ℎ )−𝐺 𝑘 sin (𝑘 ℎ ) cos (𝑘 ℎ )       (S31) 

multi-layer systems involving an arbitrary number of stacked layers of constant stiffness and 

exponentially varying stiffness with depth can be handled. 

For example, consider an inhomogeneous layer of thickness h1, shear wave propagation velocity 

at surface V01, wavenumber at the origin 𝑘 = 𝜔/𝑉 , and soil mass density 𝜌   over a 

homogeneous layer of thickness h2, shear wave propagation velocity V2, shear modulus 

G2,wavenumber 𝑘 = 𝜔 𝑉⁄  and soil mass density 𝜌 . 

The state vector [S(h2)]2 at the bottom of the homogeneous layer is related to [S(0)]2, referring to 

the state vector at the top of the layer, through the transfer matrix [L]2:   
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𝑆(ℎ ) = 𝐿 𝑆(0)              (S32) 

Continuity of stresses and displacements at the interface between the two layers requires: 

𝑆(0) = 𝑆(ℎ )               (S33) 

where, 𝑆(ℎ ) = 𝐿 𝑆(0)              (S34) 

Replacing Eqs. (S33) and (S34) in Eq. (S32) and setting [D]=[L]2[L]1 yields:  

𝑆(ℎ ) = 𝐷 𝑆(0)              (S35) 

Upon implementing Eqs. (S29) and (S31), matrix [D] is equal to:  

𝐷 = 𝐷 𝐷𝐷 𝐷               (S36) 

 

where 

𝐷 = 𝑐𝑜𝑠(𝑘 ℎ )𝑒  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒+ 𝜌 𝜔 𝑠𝑖𝑛(𝑘 ℎ )𝑘 𝑘 ℎ  𝐽 𝑘 ℎ𝛼 𝑁 𝑘 ℎ𝛼 𝑒 − 𝐽 𝑘 ℎ𝛼 𝑒  𝑁 𝑘 ℎ𝛼    
𝐷 = 𝑘 𝑐𝑜𝑠(𝑘 ℎ )𝜌 𝜔 𝑒  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒+ 𝑠𝑖𝑛(𝑘 ℎ )𝑘 ℎ  𝐽 𝑘 ℎ𝛼 𝑁 𝑘 ℎ𝛼 𝑒 − 𝐽 𝑘 ℎ𝛼 𝑒  𝑁 𝑘 ℎ𝛼  

𝐷 = −𝐺 𝑘 𝑠𝑖𝑛(𝑘 ℎ )𝑒  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒+ 𝜌 𝜔 𝑐𝑜𝑠(𝑘 ℎ )𝑘  𝐽 𝑘 ℎ𝛼 𝑁 𝑘 ℎ𝛼 𝑒 − 𝐽 𝑘 ℎ𝛼 𝑒  𝑁 𝑘 ℎ𝛼        
𝐷 = −𝐺 𝑘 𝑠𝑖𝑛(𝑘 ℎ )𝑘 𝑒𝜌 𝜔  𝐽 𝑘 ℎ𝛼 𝑒 𝑁 𝑘 ℎ𝛼 − 𝐽 𝑘 ℎ𝛼  𝑁 𝑘 ℎ𝛼 𝑒+ 𝑐𝑜𝑠(𝑘 ℎ )  𝐽 𝑘 ℎ𝛼 𝑁 𝑘 ℎ𝛼 𝑒 − 𝐽 𝑘 ℎ𝛼 𝑒  𝑁 𝑘 ℎ𝛼  

 

  



 

9 
 

FIGURES 

 
 
Figure S1: Distribution of  normalized (a) displacements, (b) shear strains, (c) curvatures and (d) shear stresses with 
depth of an inhomogeneous layer with V0/VH = 0.25 and excitation frequency equal to the resonant frequencies of 
the soil; ξ = 0.05 
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Figure S2: Comparison of shear strains (a) and curvatures (b) with depth, between the exact solution and the 
approximate solutions in Eqs. 27, 28 and 29 analysed for the “Profile B” case study; 𝑢(0) = 1 m/s2, f = f3 = 5.13 Hz, 
ξ = 0.05 
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TABLES 

Table S1. Soil layering and Vs values reported for the KiK-net station IBRH13 – “Profile A” 
 

No Thickness (m) Depth (m) Vs (m/sec) 
1 1 1 170 
2 15 16 280 
3 8 24 400 
4 10 34 600 
5 10 44 1050 
6 32 76 2600 
7 ---- ----- 3000 

Source: Data from NEID (2019). 
 
 
Table S2. Data reported for the San Francisco Bay area profile – “Profile B” 
 

No Thickness (m) Depth (m) Vs (m/sec) 
1 0.42 0.42 112 
2 0.42 0.84 135 
3 0.43 1.27 159 
4 0.43 1.7 165 
5 0.64 2.34 165 
6 0.64 2.98 165 
7 0.64 3.62 165 
8 0.64 4.26 165 
9 1.71 5.97 130 
10 1.71 7.68 130 
11 1.93 9.61 130 
12 2.18 11.79 130 
13 3.21 15 184 
14 3.21 18.21 184 
15 4.3 22.51 184 
16 5 27.51 257 
17 2 29.51 232 
18 4 33.51 300 
19 16.5 50 300 
20 10 60 550 

Source: Data from Gazetas and Dobry (1984).  
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